Abstract

Strenx 1100 is one of the most important structural steel characterized by upmost mechanical properties, generally preferred for load-bearing applications at many engineering fields such as marine and crane. Minimum quantity lubrication (MQL) is a method that presents sustainable machining with applying pulverized oil into the cutting zone, proved it by obtaining better machinability characteristics compared to conventional approaches. Surface roughness is a response parameter reflects the quality of a machined part in a certain degree which should be produced as per the industrial requirements. This paper focuses on the surface roughness (Ra) evaluation of Strenx 1100 steel during milling under MQL conditions. Taguchi design of experiments were utilized with combining three levels of cutting speed (vC), feed rate (f) and depth of cut (aP) in order to create L9 orthogonal array. The findings are discussed using analysis of variance (ANOVA), signal-to-noise ratio (S/N) based optimization and 3d surface plots. According to the results, it is observed that the first level of cutting parameters namely vC=75 m/min, f=0.075 mm/rev and aP=0.25 mm need to be selected for optimization of response parameter while feed rate has more influence (66.9%) than depth of cut (22.5%) and cutting speed (0.4%) on surface roughness. Graphical representations exhibit the general trend of surface roughness which provides chance to selection of accurate cutting conditions for required response value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call