Abstract

We report results of investigations of a high-speed drainage of thin aqueous films squeezed between randomly nanorough surfaces. A significant decrease in the hydrodynamic resistance force as compared with that predicted by Taylor's equation is observed. However, this reduction in force does not represent the slippage. The measured force is exactly the same as that between equivalent smooth surfaces obeying no-slip boundary conditions, but located at the intermediate position between peaks and valleys of asperities. The shift in hydrodynamic thickness is shown to be independent of the separation and/or shear rate. Our results disagree with previous literature data reporting very large and shear-dependent boundary slip for similar systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.