Abstract

Background/purposeFew studies have focused on the influence of simulated toothbrush abrasion on the surface qualities of novel nanofilled and nanohybrid composites. The aim of the study was to evaluate the surface roughness and gloss values of resin-based composite (RBC) materials with various filler types before and after simulated toothbrush abrasion. Materials and methodsOne nanofilled (Filtek Z350 XT [FT3]), two nanohybrids (Harmonize [HM] and Clearfil Majesty [CM]) and one microhybrid (Filtek Z250 [FT2]) were evaluated. Twelve specimens of each material were made and polished with silicon carbide sandpapers. Initial surface roughness and gloss values were measured as negative controls. Then, all specimens were subjected to simulated toothbrush abrasion on a custom-made apparatus. After 2000, 4000 and 8000 cycles, the surface roughness and gloss values of all specimens were tested. One additional specimen from each group was selected for scanning electron microscope (SEM) analysis. ResultsFor FT3, Ra and GU values did not significantly change until after 8000 cycles during the process of toothbrushing (P > 0.05). For HM, CM and FT2, the Ra and GU values significantly decreased after 4000 and 8000 cycles of toothbrush abrasion (P < 0.05). After 8000 cycles of toothbrush abrasion, FT3 presented the lowest surface roughness and highest gloss values of all materials (P < 0.05). SEM images showed that surface textures and irregularities corresponded to the results of surface roughness and gloss. ConclusionSurface roughness and gloss after simulated toothbrush abrasion were material dependent. Nanofilled resin composite presented the lowest Ra values and highest GU values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call