Abstract

BackgroundThe roughening of the inner surface of a fixed ceramic restoration is an important factor for the bonding process. The aim of this study is to investigate the effect of combined surface treatments (acid etching, air-abrasion and Er: YAG Laser) on surface roughness of CAD/CAM fabricated zirconia (ZrO2) and lithium-disilicate glass ceramics (LDS).MethodsSixty ZrO2 (Ceramill Zi) and LDS (IPS e.max CAD) specimens, (5 mm in width, 5 mm in length and 1.5 mm in height) were fabricated using CAD/CAM and sintered according to the manufacturer’s instructions. All specimens subjected to three surface treatment combinations; etching with 4% hydrofluoric acide (HF), airborne-particle abrasion with 110-μm alumina (Al2O3) (AP) and Er:YAG laser (Er:YAG) (Group A—HF + AP; Group B—Er:YAG + AP, and Group C—Er:YAG + HF). Perthometer was used to measure the surface roughness of the specimens before and after the tretments.ResultsGroup A presented the highest Ra (LDS 0.81 ± 0.27 and ZrO2 0.67 ± 0.21 after treatment) and Group C the lowest (LDS 0.45 ± 0.13 and ZrO2 0.26 ± 0.07, after treatment). Compared with before treatment, the Ra were significantly different only in Group A both ZrO2 and LDS after treatment (p < 0.05). Qualitative SEM images suggested the surface topography of the ZrO2 was smoother than the LDS. Less surface changes were observed in the Er:YAG combined procedures than HF + AP.ConclusionsHF + AP was significantly succesful in modifying the ceramic surface. Er:YAG did not sufficiently promote the surface topography, even if combined with any other treatments. Overall, surface tretments on ZrO2 not easier than LDS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call