Abstract

The differences between the physicochemical properties of the laser and electron beam powder bed fusion (L- and EB-PBF) methods are yet to be explored further. In particular, the differences in the residual stress and phase stability of alloys with unstable phases remain unexplored. The present work is the first to systematically investigate how the heat source type and process parameters affect the surface residual stress and phase stability of an unstable β-type titanium alloy, Ti–15Mo–5Zr–3Al. The surface residual stress and β-phase behavior were studied using high-precision X-ray diffraction (HP-XRD). Significant differences were observed between the two methods. The L-PBF-made specimens exhibited tensile residual stresses of up to 400 MPa in the surface area. HP-XRD analysis revealed a stress-induced lattice distortion, interpreted as a transitional state between the β-phase and α”-phase. In contrast, the EB-PBF-made specimens showed no significant residual stress and had an undistorted β-phase coexisting with the hexagonal α-phase caused by elemental partitioning. This study provides new insights into the previously neglected effects of L-PBF and EB-PBF in unstable β-type titanium alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call