Abstract

Additively manufactured metal parts often have a high level of residual stress and can exhibit complex crystalline phase properties due to the rapid cooling nature of their fabrication process. X-ray diffraction (XRD) is a non-destructive technique that can characterize both the residual stress and the crystalline phase properties in detail. However, XRD is an ex-situ measurement and provides only the final state of the manufactured parts. In this article, a method that combines the XRD analyses and numerical simulation of the thermal history during the manufacturing process is reviewed with two examples of titanium alloys fabricated by laser and electron beam powder fusion techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.