Abstract

Quality control of micro-nano structured and freeform surfaces is becoming increasingly important, which leads to challenging requirements in the measurement and characterization of rough and highly reflective surfaces. As an important measurement technique, white light scanning interferometry (WLSI) is a fast noncontact method to measure three-dimensional (3D) surface profiles. Nevertheless, the existing WLSI 3D surface reconstruction algorithms are prone to environmental vibrations and phase changes caused by reflections on the tested surface. A novel peak detecting algorithm that combines the white light phase-shifting interferometry (WLPSI) method and fast Fourier transform (FFT) coherence-peak-sensing technique is proposed in this paper, which can accurately determine the local fringe peak and improve the vertical resolution of the measurement. A microcomponent (10μm standard step height) and a spherical surface were used as test specimens to evaluate the proposed method. Both simulated and experimental results show that the proposed algorithm improves the precision and anti-interference ability of the WLPSI and FFT methods, which can effectively reduce the batwing effects at the edges and solve the problem of positioning error in the maximum modulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call