Abstract

A yet unknown surface reconstruction of V3Si(001), which is most likely induced by carbon, is used to investigate the quasi-particle energy gap at the atomic scale by a cryogenic scanning tunneling microscope. The width of the gap was virtually not altered at and close to carbon impurities, nor did it change at different sites of the reconstructed surface lattice. A remarkable modification of the spectroscopic signature of the gap was induced, however, upon moving the tip of the microscope into controlled contact with the superconductor. Spectroscopy of the resulting normal-metal -- superconductor junction indicated the presence of Andreev reflections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.