Abstract
Ag ions are known for their antibacterial effects. Ag containing silicate glasses have been extended to create bioactive glasses that exhibit inhibitory effects on bacterial growth using different techniques. In this work, calcium and calcium/silver silicophosphate glasses were synthesized from the sol-gel process and their physicochemical and in vitro biological properties were studied and compared. The effect of silver concentration on in vitro bioactivity and antibacterial properties of the glasses was investigated. Ag2O was substituted for CaO in the glass formula up to 2 mol% and in vitro bioactivity of the samples was evaluated by soaking them in simulated body fluid followed by structural characterization using XRD, FTIR and SEM techniques. The results showed that both glasses favored precipitation of the calcium phosphate layer when they were soaked in simulated body fluid; however, the morphology of apatite crystals changed for the 2% mol silver containing sample. Substitution of 2% mol Ag2O for CaO seemed to slightly stimulate the rate of precipitation. The in vitro biodegradation rate of the silver/ calcium silicophosphate glasses was lower than that of the silver-free one (control). Also, the antibacterial properties of the samples indicated that these effects were improved by increasing silver concentration in bioactive glass composition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.