Abstract
The surface of silica nanoparticles was modified with poly(ethylene glycol) methacrylate (PEGMA) or poly(propylene glycol) methacrylate (PPGMA) in order to improve the dispersion of nanoparticles in a polymer matrix. Nanosized silica particles were synthesized by the Stöber method with tetraethyl orthosilicate (TEOS). Silica nanoparticles were treated with triethoxyvinylsilane (VTES) as a coupling agent to introduce reactive groups and the PEG or PPG were then grafted onto the particle surface via UV-photopolymerization. Various analytical methods, i.e., scanning electron microscopy (SEM), thermogravimetry (TG), zeta potential measurement, and water vapor adsorption measurement were used to comprehensively characterize the unmodified(pure) and modified silica particles. The SEM images of the pure and modified particles demonstrated that both particles have a spherical shape and a uniform size without agglomeration. The silica particles modified with polymers showed higher weight loss than unmodified silica particles because of the decomposition of the organic polymers grafted onto the particles. The surface modification of silica particles with polymers decreased the zeta potential values of the silica surface. Modified silica particles had lower water vapor adsorption due to the hydrophobic surface property resulting from the polymers grafted onto the silica surface. In addition, we have developed an electrical conductivity measurement as a novel method to analyze the surface properties of silica nanoparticles. The modified silica particles had lower electrical conductivity than that of unmodified silica particles.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have