Abstract

AbstractThe surface plasmon resonance (SPR)‐generated electric field (E‐field) intensities around a Ag nanocube (NC) before and after it is covered by a BaTiO3 (BTO) layer (BTO@Ag NC) were calculated. It was observed that the theoretical E‐field intensities were reduced on BTO@Ag NCs, thus suggesting inferior catalytic activities under visible light illumination. However, BTO@Ag NCs experimentally displayed better photocatalytic performance than that of Ag NCs under illumination at 633 nm, both in ambient argon (Ar) and in ambient air, where p‐aminothiophenol (PATP) molecules were used to probe the conversion. The mechanism can be attributed to the surface polarization of the BTO layer trigged by a SPR effect of the Ag core. The oscillation of free electrons in the Ag core aroused appearance of surface polarization charge on the ferroelectric (FE) BTO surface, which resulted in the enhanced catalytic properties of BTO@Ag NCs. Therefore, our finding may provide a novel method to enhance visible‐light responsive photocatalytic activity of wide bandgap FE materials by depositing them on plasmonic metal nanostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.