Abstract

Narrow peaks are observed in the transmission spectra of p-polarized light passing through a thin gold film that is coated on the surface of a transparent diffraction grating. The spectral position and intensity of these peaks can be tuned over a wide range of wavelengths by simple rotation of the grating. The wavelengths where these transmission peaks are observed correspond to conditions where surface plasmon resonance occurs at the gold-air interface. Light diffracted by the grating couples with surface plasmons in the metal film to satisfy the resonant condition, resulting in enhanced light transmission through the film. Notably, this phenomenon is not observed at flat, gold-coated surfaces or uncoated gratings, where coupling to surface plasmons does not occur. The nature of the coupling and, thus, the details of light transmission are governed by the momentum matching conditions between the diffracted light and the surface plasmons. In the presence of bound analytes or surface films, the enhanced transmission peaks are red-shifted, making a simple, yet highly responsive sensing platform. The utility of this platform is demonstrated for ex situ sensing by analyzing thin films of various thicknesses and detecting a model immunoreaction between bovine serum albumin and anti-bovine serum albumin. This grating-based transmission surface plasmonic device represents a simple and sensitive platform, which can be readily tuned to enhance performance and be used in the study of a variety of surface adsorption processes or analysis of biomolecular interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.