Abstract

Effect of silver nanoparticles on the performance of the solar cell is presented. We fabricated an amorphous silicon solar cell with a high quality absorber layer, deposited by sputtering. We have investigated the quality variation in the absorber layer with three different power modes of sputtering. The effect of hydrogen incorporation on the bandgap, dark conductivity, photo conductivity and hence photo gain of absorber layer is studied for the three power modes of sputtering. Silver nanoparticles are embedded in the high quality absorber layer of the solar cell at a depth of 50 nm. We are able to visualize the effect of surface plasmon resonance in the vicinity of 625 nm. Along with the plasmon resonance we are able to visualize the scattering effects in the long wavelength regions. The effect of areal coverage of the silver nanoparticles inside the absorber layer on the transmittance, J-V characteristics and external quantum efficiency is reported. We are able to increase the light absorption in the weakly absorbing region of 600–675 nm by incorporating silver nanoparticles. The transmission is reduced to 46.6%, and in the vicinity of 625 nm we achieved 10.2% higher external quantum efficiency than the reference device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.