Abstract
The reduction of wavefront aberrations is essential in a number of fields, including astronomy, microscopy, photography, vision science, lithography, and lasers. Aberrations may be determined either directly with wavefront sensors or indirectly with signal- or image-based optimization algorithms. Here, we introduce a novel wavefront-sensing methodology that employs intensity differences across a beam of light to encode local wavefront slopes via attenuated total internal reflection following surface-plasmon excitation at the surface of a thin gold film. This method excels due to the dense spatial sampling of the wavefront and the fact that the wavefront itself can be determined by straightforward integration of two sets of images captured in orthogonal directions without time-consuming optimization, deconvolution, or spot centroiding.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have