Abstract
The surface patterning of protein using fabrication or the external functionalization of structures demonstrates various applications in the biomedical field for bioengineering, biosensing and antifouling. This review article offers an outline of the existing advances in protein patterning technology with a special emphasis on the current physical and physicochemical methods, including stencil patterning, trap- and droplet-based microfluidics, and chemical modification of surfaces via photolithography, microcontact printing and scanning probe nanolithography. Different approaches are applied for the biological studies of recent trends for single-protein patterning technology, such as robotic printing, stencil printing and colloidal lithography, wherein the concepts of physical confinement, electrostatic and capillary forces, as well as dielectrophoretics, are summarised to understand the design approaches. Photochemical alterations with diazirine, nitrobenzyl and aryl azide functional groups for the implication of modified substrates, such as self-assembled monolayers functionalized with amino silanes, organosilanes and alkanethiols on gold surfaces, as well as topographical effects of patterning techniques for protein functionalization and orientation, are discussed. Analytical methods for the evaluation of protein functionality are also mentioned. Regarding their selectivity, protein pattering methods will be readily used to fabricate modified surfaces and target-specific delivery systems for the transportation of macromolecules such as streptavidin, and albumin. Future applications of patterning techniques include high-throughput screening, the evaluation of intracellular interactions, accurate screening and personalized treatments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have