Abstract
The principal available methods for the preparation of high quality CdSe quantum dots (QDs) are based on organic ligands such as tri-n-octylphosphine oxide (TOPO) which lead to non-water soluble nanocrystal QDs. As most biological interactions take place in aqueous media, much effort has been made on preparation of water soluble QDs. In this report, the water soluble CdSe QDs were prepared via a ligand exchange process between organic soluble CdSe-TOPO quantum dots and poly(acrylic acid). The poly(acrylic acid) (PAA) can attach onto the surface of CdSe-TOPO quantum dots in a ligand exchange process to make water-soluble CdSe-PAA complexes. In spite of CdSe-TOPO QDs, the resultant CdSe-PAA QDs are soluble in polar solvents such as methanol or water. Optical properties of CdSe-PAA QDs in several solvents showed that the emission intensity of QDs was mainly decreased in protic solvents such as methanol or water. The TEM images of dots in different solvents were examined and some aggregation of dots was found in protic solvents. In comparison with PAA, the addition of PDMAEMA to the solution of CdSe-TOPO QDs in THF increased the emission intensity of QDs. Furthermore, we found that the entitled ligand exchange process was fast and conjugation process completed at short time intervals. The UV-irradiation of the CdSe-PAA conjugate in water showed that the emission was amplified by increasing the irradiation time.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have