Abstract

We introduce a method of recovering the shape of a smooth dielectric object using diffuse polarization images taken with different directional light sources. We present two constraints on shading and polarization and use both in a single optimization scheme. This integration is motivated by photometric stereo and polarization-based methods having complementary abilities. Polarization gives strong cues for the surface orientation and refractive index, which are independent of the light direction. However, employing polarization leads to ambiguities in selecting between two ambiguous choices of the surface orientation, in the relationship between the refractive index and zenith angle (observing angle). Moreover, polarization-based methods for surface points with small zenith angles perform poorly owing to the weak polarization. In contrast, the photometric stereo method with multiple light sources disambiguates the surface normals and gives a strong relationship between surface normals and light directions. However, the method has limited performance for large zenith angles and refractive index estimation and faces strong ambiguity when light directions are unknown. Taking the advantages of these methods, our proposed method recovers surface normals for small and large zenith angles, light directions, and refractive indexes of the object. The proposed method is positively evaluated in simulations and real-world experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.