Abstract

Germanium-on-Silicon (Ge-on-Si) avalanche photodiodes (APDs) are of considerable interest as low intensity light detectors for emerging applications. The Ge absorption layer detects light at wavelengths up to ≈ 1600 nm with the Si acting as an avalanche medium, providing high gain with low excess avalanche noise. Such APDs are typically used in waveguide configurations as growing a sufficiently thick Ge absorbing layer is challenging. Here, we report on a new vertically illuminated pseudo-planar Ge-on-Si APD design utilizing a 2 µm thick Ge absorber and a 1.4 µm thick Si multiplication region. At a wavelength of 1550 nm, 50 µm diameter devices show a responsivity of 0.41 A/W at unity gain, a maximum avalanche gain of 101 and an excess noise factor of 3.1 at a gain of 20. This excess noise factor represents a record low noise for all configurations of Ge-on-Si APDs. These APDs can be inexpensively manufactured and have potential integration in silicon photonic platforms allowing use in a variety of applications requiring high-sensitivity detectors at wavelengths around 1550 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call