Abstract

The avalanche photodiode (APD) is widely used in optical fibre communications (Campbell, 2007) due to its ability to achieve high internal gain at relatively high speeds and low excess noise (Wei et al., 2002), thus improving the system signal-to-noise ratio. Its internal mechanism of gain or avalanche multiplication is a result of successive impact ionisation events. In an optical receiver system, the advantage of internal gain, in the APD, is experienced when the amplifier noise dominates that of a unity-gain photodiode. This increases the signal-to-noise ratio (SNR) and ultimately improves the receiver sensitivity as the gain increases until the APD noise rises to become dominant. Indium Phosphide (InP) is widely used as the multiplication layer material in commercially available APDs for applications in the 0.9–1.7μm wavelength region with In0.53Ga0.47As grown lattice-matched to it as the absorption layer. It has been predicted that Indium Alluminium Arsenide (In0.52Al0.48As) will replace InP, as a more favourable multiplication layer material due to its lower excess noise characteristics (Kinsey et al., 2000). In comparison to InP, tunnelling currents remain lower in InAlAs due to its larger bandgap. While holes ionise more readily than electrons in InP, the opposite holds true for InAlAs and InGaAs, as electrons ionise more readily than holes; thus making the InGaAs/InAlAs combination superior to InGaAs/InP in a SAM APD, in terms of lower excess noise, higher gain-bandwidth product, and improved sensitivity. Studies have also shown that the breakdown voltage of InAlAs APDs is less temperature dependent compared to InP (Tan et al., 2010), which would be useful in temperature sensitive applications, thus making temperature control less critical. The sensitivity performance criterion for digital receivers is its bit-error rate (BER), which is the probability of an error in the bit-identification by the receiver. The receiver sensitivity is defined as the minimum average optical power to operate at a certain BER; 10-12 being a common standard for digital optical receivers. The sensitivity of APD-based high speed optical receivers is governed by three main competing factors, namely the excess noise, avalanche-buildup time and dark current of the APD. Generally, the excess noise and avalanche-buildup time increases with APD gain. Thus, for a fixed multiplication layer thickness, there is a sensitivity-optimised gain that offers a balance between SNR while keeping the degrading contributions from the excess noise factor and intersymbolinterference (ISI) at a minimum. More importantly, changing the thickness of the multiplication layer strongly affects the receiver sensitivity, as the aforementioned three

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call