Abstract
Electronic nematicity plays important role in iron-based superconductors. These materials have layered structure and theoretical description of their magnetic and nematic transitions has been well established in two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause non-trivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on bulk nematic order and possible preemptive state where this order is only formed near the surface. We found that the interlayer tunneling suppresses the bulk nematicity which makes favorable formation of a surface nematic above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors alternating from layer-to-layer nematic order parameter in the bulk. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. The intermediate surface-nematic state may resolve the current controversy about the existence of the weak "meta-nematic transition" in the compound BaFe$_2$As$_{2-x}$P$_{x}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.