Abstract

The growth of uniform thin films on foreign substrates is impeded by several morphological instabilities. Hill-and-valley structures are formed and enhanced during sputter deposition where surface height perturbations have an opportunity to grow to large amplitudes. We show via kinetic Monte Carlo (kMC) simulations that while surface roughness can be partially controlled by changing growth conditions, such as substrate temperature, the diffusion of particles over step edges plays a very important role in determining both surface roughness and the density of the films. Our kMC simulations provide a way to evaluate the strength of surface instabilities during sputter deposition of thin films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.