Abstract

A method for combinatorial sputter deposition of thin films on microparticles is presented. The method is developed for a laboratory-scale magnetron sputter system and uses a piezoelectric actuator to agitate the microparticles through oscillation. Custom-made components enable to agitate up to nine separate batches of particles simultaneously. Due to the agitation, the whole surface of the particles can be exposed to the sputter flux and thus completely covered with a thin film. By sputtering a CrMnFeCoNi high entropy alloy target, separate batches of polystyrene microspheres (500 μm monodisperse diameter), Fe alloy particles (300 μm mean size) and NaCl salt particles (350 μm mean size) were simultaneously coated with a homogeneous thin film. In contrast, a CrMnFeCoNi thin film that was deposited on agglomerating Al particles (5 μm mean size) only partially covers the surface of the particles. By co-sputtering a CrMn, an FeCo and a Ni target, nine separate batches of Al particles (25 μm mean size) were coated with a CrMnFeCoNi thin film with a composition gradient. These depositions demonstrate the ability to coat different types of particles with uniform films (from elemental to multinary compositions) and to deposit films with composition gradients on uniform particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.