Abstract
This work reports the study of changes of surface topography and bulk structure of 316L stainless steel (SS) irradiated at 773 K with 51.4 MeV C-ions to a fluence of 1.14 × 10 22 ions/m 2. The calculated damage levels at the surface and at the damage peak position were 0.9 and 124 displacements per atom (dpa), respectively. The changes of surface topography and bulk structure were checked at room temperature by the use of scanning probe microscopy (SPM), scanning electron microscopy (SEM), 1 MV high voltage electron microscopy (HVEM) and transmission electron microscopy (TEM) with cross-section technique. The experimental results suggested that high dose carbon ion irradiation led to (1) serious pitting, flaking, and crazing along grain boundaries of the irradiated surface; (2) voids formed in the area around the damage peak and mean void swelling is about 4%. The void swelling data deduced from the SEM and TEM observations were the same within the experimental error. Furthermore, some phase change has been detected in the carbon ion stop region. All these observed phenomena were interrelated and have been discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have