Abstract
As the ultrastructural data on the effects of ozone on pulmonary alveolar macrophages (PAM) are lacking, transmission (TEM) and scanning (SEM) electron microscopy were performed on rat PAM present in alveolar lavages following exposure to ozone. Rats were continuously exposed for 7 d to ozone concentrations ranging from 0.25 to 1.50 mg/m3 for 7 d followed by a 5-d recovery period. Additionally, morphometry on lung sections was performed to quantitate PAM. In a second experiment rats were continuously exposed to 1.50 mg O3/m3 for 1, 3, 5, or 7 d. To study the influence of concurrent ozone exposure and lung infection, due to Listeria monocytogenes, rats were exposed for 7 d to 1.50 mg O3/m3 after a Listeria infection. The surface area of lavaged control PAM was uniformly covered with ruffles as shown by SEM and TEM. Exposure to 0.5 mg ozone/m3 for 7 d resulted in cells partly covered with microvilli and blebs in addition to normal ruffles. The number of large size PAM increased with an increase in ozone concentration. After 1 d of exposure, normal-appearing as well as many small macrophages with ruffles and scattered lymphocytes were seen. Lavage samples taken after 5 or 7 d of exposure showed an identical cell composition to that taken after 3 d of exposure. After Listeria infection alone, lavage samples consisted of mainly lymphocytes and some macrophages. Small quantitative changes, such as an increase in the number of polymorphonuclear neutrophils and large-size PAM, occurred in lavages after ozone exposure and infection with L. monocytogenes. Morphometric examination of lung sections revealed a concentration-related increase in the number of PAM, even in animals exposed to 0.25 mg ozone/m3 for 7 d. Centriacinar regions were more severely affected than other regions of lung tissue. By 5 d after termination of exposure to ozone, the number of lysozyme-positive alveolar cells was still significantly increased in centriacinar areas of the lung. The results indicate that ozone exposure causes major changes in the number, size, and surface morphology of PAM in rat lung. Furthermore, the results presented here suggest that changes in alveolar macrophage function are reflected by morphological changes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have