Abstract

Despite being potent, the marketed formulations of Docetaxel (DX) are associated with numerous side effects and are meant for intravenous administration. Advanced pharmaceutical nanotechnology has a significant potential to facilitate the ‘intravenous (i.v) to oral switch’. The present research work deals with the development of an orally administrable, folate-receptor-targeted Nanostructured lipid carriers (NLCs) of DX (FA-DX-NLCs) for facilitating oral chemotherapy of lung cancer while overcoming the bioavailability and toxicity issues. The nanoformulation prepared to employ high-pressure homogenization and lyophilization, was evaluated and statistically analyzed for various in-vitro and in-vivo formulation characteristics. The lyophilized nanoparticles were observed to be spherical with a particle size of 183.4 ± 2.13 (D90), Pdi of 0.358 ± 0.03, % EE of 82.41 ± 2.44, % DL of 4.41 ± 0.54 and a zeta potential of −3.3 ± 0.7 mv. The increased oral in-vivo bioavailability of DX was evident from the plasma–concentration area under the time curve (AUC0-t), which was ∼ 27-fold greater for FA-DX-NLCs as compared to DX suspension. The orally administered FA-DX-NLCs exhibited excellent antitumor efficacy in a pre-clinical model of lung carcinoma. Tumor staging, histopathology, and immunostaining of the tumors suggested greater anti-proliferative, apoptotic, anti-metastatic, and anti-angiogenic potential as compared to DX-suspension. The pre-clinical toxicity studies affirmed the excellent safety and bio-compatibility of FA-DX-NLCs. The research work presents immense translational potential for switching the DX-based chemotherapy for lung cancer from ‘hospital to home.’

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call