Abstract

Nanoparticle-aided combination chemotherapy offers several advantages like ratiometric drug delivery, dose reduction, multi-targeted therapy, synergism, and overcoming multi-drug resistance. The current research was instigated to facilitate targeted and ratiometric co-delivery of docetaxel (DT) and curcumin (CR) through the development of folate (FA)-appended nanostructured lipid carriers (NLCs), i.e., FA-DTCR-NLCs to lung cancer cells. The FA-DTCR-NLCs were formulated by employing a scaleable and solvent-free high-pressure homogenization approach. The FA-DTCR-NLCs were evaluated for in vitro and in vivo characteristics using suitable analytical and statistical techniques. The FA-DTCR-NLCs demonstrated physicochemical properties and particokinetics suitable for targeted, ratiometric co-delivery of the anticancer agents. This was further affirmed by significantly better in vivo relative bioavailability of DT (24.85 fold) with FA-DTCR-NLCs as compared with Taxotere® (p<0.05) and cell line studies. A significant tumor regression was observed from the results of tumor staging in a murine model of lung carcinoma (p<0.05). Immunostaining of the tumor sections with tumor differentiation biomarkers suggested considerably higher apoptotic, anti-proliferative, anti-angiogenic, and anti-metastatic potential of FA-DTCR-NLCs compared with Taxotere®. In vivo toxicity assessment of the FA-DTCR-NLCs demonstrated a noteworthy reduction in DT associated side effects. The in vitro and in vivo pre-clinical findings prove the therapeutic and safety pre-eminence of FA-DTCR-NLCs for the treatment of NSCLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.