Abstract
There has been a growing interest in developing carbon-based polymer composites for electromagnetic interference (EMI) shielding materials. To achieve a high EMI shielding performance, the morphology of fillers in composites must be controlled. Although carbon fibers (CFs) have remarkable thermal and electrical properties and low density, their poor dispersion behavior within polymer matrix limits their practical applications as EMI shielding materials. In this study, we report an efficient method to disperse CFs within a thermoplastic polyurethane (TPU) matrix using pyranine-functionalized polyether (polyether–pyranine) as a dispersing agent. polyether–pyranine was grafted on the CF surfaces through π–π interactions between the CF and pyranine groups to produce surface-modified CFs (SCFs). Compared to CFs, the SCFs exhibited an improved dispersion stability within a TPU polymer matrix. Furthermore, a TPU composite with SCFs achieved an enhanced electrical conductivity and EMI shielding performance, which was primarily ascribed to the increased structural connectivity between the SCFs due to excellent dispersion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.