Abstract

An aminopropyl isobutyl polyhedral oligosilsesquioxane (NH2-POSS) surface-modified Nafion membrane has been designed by chemical grafting for vanadium redox flow batteries (VRFBs). NH2-POSS is a cage-like macromer consisting of an inorganic Si8O12 core surrounded by seven inert isobutyl groups and one active aminopropyl group. The sulfonic acid groups on the surface of Nafion can be activated by 1,1-carbonyldiimidazole for further modification with NH2-POSS. Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) prove that NH2-POSS has been successfully grafted on the surface of a Nafion 115 membrane. Although the proton conductivity decreases slightly, the organic-inorganic hybrid membranes display enhanced ion selectivity and excellent dimensional stability with lower water uptake and swelling ratio than Nafion 115. Moreover, two-dimensional-grazing incidence X-ray diffraction (2D-GIXRD) reveals that the introduction of NH2-POSS forms a POSS layer on the surface of the membrane and narrows the space of Nafion clusters, which helps to block VO2+ permeation. A VRFB with the surface-modified Nafion membrane displays an outstanding performance with an average Coulombic efficiency (CE) of 98.7% and energy efficiency (EE) of 84.5% at a current density of 80 mA cm-2, superior to those of the Nafion 115 membrane (CE = 95.7%, EE = 81.7%). Furthermore, the cell holds a high capacity retention of 49.2% after 1000 charge-discharge cycles, in contrast to that of 41.9% for the cell with Nafion 115 after only 200 cycles. The results suggest that the surface-modified hybrid membrane is a promising strategy to overcome the vanadium ion crossover in VRFBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.