Abstract

ABSTRACTReproducible nanoscale surface lithography have been produced on La00.66Ba0.33MnO3 thin films using Atomic Force Microscopy. Using an anodic oxidation technique, structures were produced using both positive tip bias voltages as well as negative tip voltages. The electric field produced by applying a positive tip bias acts to reduce the region near the surface, whereas negative tip bias causes an oxidation reaction. Using a positive tip bias, stable structures were consistently achieved which demonstrated a linear dependence of height and width on tip voltage and writing speed. Heights ranged from 5 – 50 nm and widths from 400 – 2000 nm. Negative bias voltages produced a rapid oxidation of the surface, resulting in uncontrollable writing. After etching with a 50% HCL solution it was found that controlled writing was possible with negative bias voltages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.