Abstract

Scanning gate microscopy, in which a conductive probe tip in an atomic force microscope is employed as a local, nanoscale top gate contact, has been used to characterize local carrier and current modulation effects in a 45nm diameter InAs semiconductor nanowire grown by metal organic chemical vapor deposition. Measurement of current flow in the nanowire as a function of tip position reveals that for both positive and negative tip bias voltages, carrier and current modulation is strongest when the probe tip is near the source and drain nanowire contacts, reaching a global maximum approximately 100–200nm distant from the source contact and a secondary maximum a similar distance from the drain contact and decreasing at greater tip-contact distances. This effect is explained, with verification by numerical simulation, as a consequence of the capacitance between the tip and the source and drain contacts as a function of tip location. Measurement of transconductance as a function of tip position reveals that the transconductance is approximately 80%–90% greater near the source contact than at the center of the nanowire.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.