Abstract

The aim of this article is to find a measure to improve the interfacial thermal transfer of graphene/silicon heterojunction. We propose an interfacial modification method to modify the surface of graphene/silicon heterojunction to improve the interfacial thermal conductivity. Through molecular dynamics simulation, we found that this modification method can significantly reduce the thermal resistance (ITR) of graphene/silicon interface. That is, the ITR reduction of Gr/Si can be induced by the introduction of holes on the silicon surface. In the meantime, the functionalization of substrate and methyl group can induce further reduction of ITR. When the methyl group is outside the silicon pore, the ITR reduction at the heterogeneous interface is greater than when the methyl group is inside the silicon pore. In addition, we use interface coupling intensity and phonon state density (PDOS) to analyze the internal mechanism of interfacial heat transport changes. The investigation shows that we can improve the ITR of Gr/Si heterointerface through surface modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call