Abstract
The hydrophilic surface modification of micro-porous polypropylene (PP) membranes is achieved by low-pressure 13.56 MHz RF methane (CH4)/oxygen (O2) gas mixture plasma treatment. The changes in surface wettability and surface free energy were examined by static contact angle analysis. The static water contact angle of the plasma modified membrane notably decreased with increases in treatment time and plasma power. The obvious increase in the surface energy of polypropylene membranes due to CH4/O2 mixture gas plasma treatments was also observed. Optical emission spectroscopy (OES) was used to analyze the chemical species of CH4/O2 mixture gas plasma treatment. The variations in the surface morphology and chemical structure of the micro-porous PP membranes were confirmed by confocal laser scanning microscopy (CLSM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) measurements. XPS analysis showed significantly higher surface concentrations of oxygen functional groups for CH4/O2 mixture gas plasma-modified polypropylene membrane surfaces than for the originally unmodified polypropylene membrane surface. The experimental results show the important role of chemical species in the interaction between a CH4/O2 mixture gas plasma and a membrane surface, which can be controlled by surface modification to tailor the hydrophilicity of the membrane to the requirements of various applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.