Abstract

PDMS/ceramic nanocomposite membranes were fabricated via dip-coating method. Tubular porous nanocomposite ceramic supports were used as membrane substrates and polydimethylsiloxane was applied as a top active layer. The hybrid membranes were characterized morphologically by scanning electron microscopy (SEM) and their gas transport properties were measured using single gas permeation (butane and hydrogen) at ambient temperature and different pressures. SEM micrographs confirmed the penetration of polymeric layer into ceramic support pores at low concentrations of PDMS solution. Experimental results clearly indicated that the undesirable penetration during the dip-coating stage could be avoided by increasing the concentration of PDMS coating solution. This led to the formation of a uniform and dense coating layer without penetration into pores of the support. These hybrid membranes showed higher permeability combined to a suitable selectivity in comparison with dense homogeneous PDMS membrane. In addition, at low pressures, the high selectivity of PDMS/ceramic nanocomposite membranes for condensable hydrocarbons separation revealed that the dominant mechanism is solution–diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.