Abstract

This review focuses on the surface modification of metallic nanoparticles for targeted drug delivery. Metallic nanoparticles, owing to their unique size, stability, and payload capacity, have emerged as promising drug carriers. However, their application necessitates surface modification to enable precise targeting. Various strategies, such as polymer coating methods, the use of functional groups, and bio-conjugation with targeting ligands, are explored. The review also discusses the selection of ligands based on target receptors, active and passive targeting approaches, and stimuli-responsive targeting. It further delves into the challenges of translating these strategies to clinical settings, including scalability, toxicity, and regulatory hurdles. The surface modification of metallic nanoparticles is a promising avenue for targeted drug delivery. Various strategies, including polymer coating, functionalization with specific groups, and bioconjugation with targeting ligands, have been explored to enhance the therapeutic potential of these nanoparticles. The challenges in clinical translation, continuous advancements in nanoparticle synthesis, and surface modification techniques offer a positive outlook for the future of targeted metallic nanoparticle systems. Despite the promising potential of metallic nanoparticles in drug delivery, there are several challenges that need to be addressed for their successful clinical translation. These include scalable fabrication and functionalization of nanoparticles, toxicity concerns, and regulatory hurdles. However, continuous advancements in nanoparticle synthesis and surface modification techniques are expected to overcome these challenges in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call