Abstract

Carbon nanofibers (CNFs) were functionalized with 3-glycidoxypropyltrimethoxysilane and dispersed into epoxy resin. The chemical modification of CNFs was confirmed by FTIR, SEM, EDX and TGA measurements. After silanization, FTIR showed the existance of epoxy ring; EDX detected Si element; while TGA indicated 1.1wt.% Si on CNFs. Mechanical properties were analyzed by DMA. Silanized CNFs/epoxy composites demonstrated improved dispersion of CNFs in the matrix, and an enhancement of storage modulus for about 20% compared to the neat matrix, which indicated that the modification of CNFs improved the adhesion between fillers and matrices. DC electrical conductivity of CNFs was reduced about 7-fold compared to the original CNFs due to the silane coating. Accordingly, the composites containing silanized CNFs also had lower electrical conductivity than those containing original CNFs. In spite of decreased electrical conductivity, thermal conductivity of silanized CNFs/epoxy composites was increased due to the surface modification of CNFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.