Abstract
Carbon nanofibers (CNFs) are considered ideal materials for reinforcing polymers due to their excellent mechanical properties, among others. In order to obtain composites of optimal properties the clue is to enhance the interaction between reinforcement (CNFs) and polymer matrix. Surface modification of CNFs with silane coupling agents (SCAs) has revealed as one of the most interesting methods. The silanization process has been carried out mixing at room temperature and for one minute the hydrolysed silane with CNFs. We have use four different SCAs: 3-aminopropyltriethoxyxilane (APS), 3-aminopropyltrimethoxysilane (AMMO), N-(2-aminoethyl)-3-(aminopropyltrimethoxysilane) (DAMO), and 3-glycidoxypropyltrimethoxysilane (GLYMO), in order to elucidate the SCA-CNFs interaction and the silane structures formed on CNFs surface. XPS and FTIR-ATR techniques have pointed out that each silane adsorbs on CNFs surface through chemical bonding, forming multilayers. Silane nature determines the structure taken on CNFs surface. APS and AMO silanes adsorb taking vertical structures on CNFs surface, while DMO and GMO adsorb on CNFs taking horizontal structures, stabilized by zwitterions formed through H-bonds with hydroxyl groups from CNFs surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.