Abstract

Integrating materials with different functionalities into a composite material to obtain synergetic properties has generated considerable interest in various scientific and technical fields. In this study, a dry-mechanical coating process was used to fix nanosized Al2O3 and CuO particles directly onto the surface of Al2O3 fiber substrates by employing high shear and compression forces. The resulting composite materials showed good dispersion and homogeneous distribution of Al2O3 and CuO nanoparticles. Important coating parameters, including initial particle loadings and processing times were investigated for their effects on coating characteristics and product properties. The experimental results showed that the product surface area increased with higher nanoparticle loadings. The degree of dispersion and homogenous distribution of Al2O3 nanoparticles with CuO nanoparticles increased with the processing time. Additionally, the crystalline phase of raw materials was preserved during the coating process under the conditions studied in this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call