Abstract

Abstract Aluminum matrix composites (AMCs) reinforced with micro and nano-sized Al2O3 particles are widely used for high performance applications such as automotive, military, aerospace and electricity industries because of their improved physical and mechanical properties. In this study, in order to improve the wettability and distribution of reinforcement particles within the matrix, a novel three step mixing method was used. The process included heat treatment of micro and nano Al2O3 particles, injection of heat-treated particles within the molten A356 aluminum alloy by inert argon gas and stirring the melt at different speeds. The influence of various processing parameters such as heat treatment of particles, injection process, stirring speed, reinforcement particle size and weight percentage of reinforcement particles on the microstructure and mechanical properties of composites was investigated. The matrix grain size, morphology and distribution of Al2O3 nanoparticles were recognized by scanning electron microscopy (SEM), optical microscope (OM) equipped with image analyzer, energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Also, the hardness and compression strength of samples was investigated. The results showed the poor incorporation of nano particles in the aluminum melt prepared by the common condition. However, the use of heat-treated particles, injection of particles and the stirring system improved the wettability and distribution of the nano particles within the aluminum melt. In addition, it was revealed that the amount of hardness, compressive strength and porosity increased as weight percentage of nano Al2O3 particles increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call