Abstract

Surface modification with dielectric barrier discharge (DBD) plasma was carried out at atmospheric pressure (argon as the discharge gas) to improve the biocompatibility of hydrophobic acrylate intraocular lens (IOL). Changes of the plasma-treated IOL surface in chemical composition, morphology and hydrophilicity were comprehensively evaluated by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and water contact angle (WCA) measurements. The surface biocompatibility of the untreated and plasma-treated IOLs was compared with the adhesion behavior of platelets, macrophages and lens epithelial cells (LECs) in vitro. After DBD plasma treatment, the hydrophilicity of the IOL surface was obviously improved. The changes in WCA with treatment extension may be attributed to both the introduction of oxygen or/and nitrogen-containing polar groups and the increase of surface roughness induced by plasma etching effect. The existence of low molecular weight oxidized material (LMWOM) was proved on the plasmatreated IOL which was caused by the chain scission effect of the plasma treatment. The plasma-treated IOLs resisted the adhesion of platelets and macrophages significantly. The LECs spreading and proliferation were postponed on the IOLs plasma-treated for more than 180 s, with a well maintained epithelial phenotype of LECs. The IOL biocompatibility was improved after the DBD plasma treatment. We speculate that slighter foreign-body reaction and later incidence of anterior capsule opacification (ACO) may be expected after implantation of the argon DBD plasma-treated IOL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call