Abstract

A medical grade segmented polyetherurethane (PEU) was treated with a low-powered gas plasma using O 2, Ar, N 2 and NH 3 as the treatment gases. Changes in the surface functional group chemistry were studied using X-ray photoelectron spectroscopy. The wettability of the surfaces was examined using dynamic contact angle measurements and the surface morphology was evaluated using atomic force microscopy. The influence of the surface modification to the polyurethane on the blood response to the polyetherurethane was investigated by measuring changes in the activation of the contact phase activation of the intrinsic coagulation cascade. The data demonstrate that the plasma treatment process caused surface modifications to the PEU that in all cases increased the polar nature of the surfaces. O 2 and Ar plasmas resulted in the incorporation of oxygen-containing groups that remained present following storage in an aqueous environment. N 2 and NH 3 plasmas resulted in the incorporation of nitrogen-containing groups but these were replaced with oxygen-containing groups following storage in the aqueous environment. In all plasma treatments there was a lowering of contact phase activation compared to the untreated surface, the N 2 and NH 3 treatments dramatically so.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.