Abstract
Deuterium retention in single crystal and polycrystalline tungsten and molybdenum exposed to low-energy (38200 eV/D), high ion flux (10211022 D/m2s) deuterium plasmas at various temperatures were examined with the D(3He,p)4He nuclear reaction at a 3He energy varied from 0.69 to 4.0 MeV, and with thermal desorption spectroscopy. The surface morphology was examined by scanning electron microscope. Blisters formed on the Mo surfaces under plasma exposure are significantly larger in size than those for W. The D retention in the W and Mo samples increases with the exposure temperature, reaching its maximum at about 500 and 530 K (for ion fluxes of 1021 and 1022 D/m2/s), respectively, and then decreases as the temperature grows further. For polycrystalline W and Mo exposed at temperatures above 400 K, the D retention in the bulk (far beyond the ion implanted zone) is dominant. Plastic deformation caused by deuterium super-saturation within the near-surface layer is suggested as a mechanism for blister formation and creation of defects responsible for deuterium trapping at depths up to several micrometers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.