Abstract

The polytetrafluoroethylene (PTFE) surfaces, modified by 1 kV Ar + or O 2 + ion beam irradiation, was investigated with in-situ X-ray photoelectron spectroscopy (XPS), scanning electron micrographs (SEM), atomic force microscopy (AFM) measurements. The surface of PTFE films modified by Ar + ion irradiation was carbonized and the surface roughness increased with increasing ion doses. The surface of PTFE films modified by both Ar + ion in O 2 atmosphere and O 2 + ion irradiation formed the oxygen function group on PTFE surface, and the surface roughness change was relatively small. The adhesion improvement in Ar + ion irradiated PTFE surface is attributed to mechanical interlocking due to the surface roughness and CF-radical, but that in Ar + ion irradiation in an O 2 atmosphere was contributed by the CO complex and CF-radical with mechanical interlocking. The CO complex and CF-radical in O 2 + ion irradiated surface contributed to the adhesion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call