Abstract

A study is undertaken of the loss kinetics of H and Cl atoms in an inductively coupled plasma (ICP) reactor used for the etching of III-V semiconductor materials. A time-resolved optical emission spectroscopy technique, also referred to as pulsed induced fluorescence (PIF), has been combined with time-resolved microwave hairpin probe measurements of the electron density in a pulsed Cl2/H2-based discharge for this purpose. The surface loss rate of H, kwH, was measured in H2 plasma and was found to lie in the 125–500 s−1 range (γH surface recombination coefficient of ∼0.006–0.023), depending on the reactor walls conditioning. The PIF technique was then evaluated for the derivation of kwCl, and γCl in Cl2-based plasmas. In contrast to H2 plasma, significant variations in the electron density may occur over the millisecond time scale corresponding to Cl2 dissociation at the rising edge of the plasma pulse. By comparing the temporal evolution of the electron density and the Ar-line intensity curves with 10% of Ar added in the discharge, the authors show that a time-resolved actinometry procedure using Ar as an actinometer is valid at low to moderate ICP powers to estimate the Cl loss rate. They measured a Cl loss rate of ∼125–200 s−1 (0.03≤γCl≤0.06) at 150 W ICP power for a reactor state close to etching conditions. The Cl surface loss rate was also estimated for high ICP power (800 W) following the same procedure, giving a value of ∼130–150 s−1 (γCl∼0.04), which is close to that measured at 150 W ICP power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.