Abstract

Surface properties of nanoparticles (NPs) could greatly influence their biomedical efficacy. This paradigm drives many NPs-based antimicrobial agents as the common belief that a more positively charged surface would favor intimate interactions with the negatively charged bacterial cell wall, leading to a higher overall antimicrobial efficacy. Surprisingly, this study shows the opposite effect when using ultrasmall gold nanoclusters (Au NCs) as a model to investigate the effect of surface properties on their antimicrobial performance. Leveraging on the molecular properties of ultrasmall Au NCs, the surface properties of thiolate-protected Au NCs could be precisely controlled at the atomic level, generating a family of Au NCs with the same number of gold atoms but different surface properties. By tuning the type and ratio of surface ligands on Au NCs, more negatively charged Au NCs would produce more reactive oxygen species (ROS), leading to a better bacterial killing efficiency. This finding is in stark co...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.