Abstract
Ultra-small gold nanoclusters (Au NCs) are highly promising materials for tumor imaging and therapy because of their low toxicity, intrinsic fluorescence, and the availability of multifunctional groups for covalent linkage of diverse bioactive molecules. Au NCs stabilized by bovine serum albumin (BSA) were prepared via an improved "green" synthetic routine. To ameliorate the selective affinity of Au NCs for high folate receptor (FR) expressing tumors, folic acid (FA) was immobilized on the surface of Au NCs. Subsequently, a near-infrared (NIR) fluorescent dye MPA was conjugated with Au-FA NCs for in vitro and in vivo fluorescence imaging. Similarly, Doxorubicin (DOX), a widely used clinical anticancer drug, was also conjugated to the folate-modified Au NCs to form a prodrug (Au-FA-DOX). Cellular and in vivo acute toxicity studies demonstrated the low toxicity of the Au-FA-MPA to normal cells and tissues. Additionally, in vitro and in vivo study of the dynamic behavior and targeting ability of Au-FA-MPA to different tumors validated the high selective affinity of Au-FA-MPA to FR positive tumors. With regard to the Au-FA-DOX, high anti-tumor activity was displayed by this pro-drug due to the FR mediated uptake. Herein, all of the results supported the potential of using ligand-modified Au NCs for tumor imaging and targeted therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.