Abstract

F gold nanoclusters (Au NCs) or nanodots (NDs) with sizes smaller than 3 nm are a specific type of gold nanomaterials. In this review, Au NCs are used to represent fluorescent Au nanomaterials with sizes smaller than 3 nm. Unlike the most popular and well-known spherical, large gold nanoparticles, Au NCs do not exhibit surface plasmon resonance (SPR) absorption in the visible region but have fluorescence in the visible to near-infrared (NIR) region. With advantages of long lifetime, large Stokes shift, and biocompatibility, Au NCs have become interesting sensing and imaging materials. Although Au NCs prepared from Au in the presence of small thiol compounds such as 2-phenylethanethiol (PhCH2CH2SH) have been reported over the past decade, 5 their use for bioapplications have not been well recognized, mainly because of their low quantum yield (usually less than 1%), poor water dispersibility, photo and chemical instability, and difficulty for conjugation. In the past decade, many strategies for the preparation of stable, water dispersible, highly fluorescent, and biocompatible Au NCs have been reported. There are two major categories elucidating the recent advanced techniques for the preparation of Au NCs. The first category is through etching of larger sizes of nonfluorescent gold nanoparticles (Au NPs) by thiol compounds such as mercaptopropionic acid. The second category is from reduction of Au in the presence of a ligand or template (protein) such as bovine serum albumin (BSA). The optical properties of biocompatible Au NCs are dependent on their size, surface ligand or template, and the surrounding medium, and thus they can be studied to develop sensitive and selective sensing and imaging systems for the detection of various analytes. The growing popularity of Au NCs in analytical applications has been realized in these few years. Several excellent review papers dealing with Au NCs from the viewpoint of analytical chemistry have been reported to highlight their potential for the analysis of environmental and biological samples. This review focuses on recent advances in Au NCs based sensing and imaging systems between 2012 and 2014. Current challenges and future prospects of Au NCs for fundamental studies and analytical applications will be provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.