Abstract

The paper presents the results of complex studies of the structure, microhardness and depth of the hardened surface layer of 40Kh steel formed as a result of electromechanical treatment with dynamic application of a deforming force (EMT with impact). The research was carried out using optical microscopy, X-ray diffraction analysis, and microhardness methods. The method of electromechanical treatment with dynamic force impact consisted in simultaneous transmission of electric current pulses and deforming force through the contact zone of the tool with the part. As a result of shock-thermal effects with different current densities (j = 100 A/mm2; 300 A/mm2; 600 A/mm2), segments of the hardened layer of different sizes and structure composition are formed on the steel surface in cross-section. Analysis of structural and phase transformations in the surface layer of 40Kh steel subjected to dynamic electromechanical treatment indicates the formation of a specific structure of the white layer, the structure and properties close to the amorphous state of the metal with a maximum hardness HV = 8.0 – 8.5 GPa. As you move away from the surface, a transition zone is formed behind the segment of the white layer with a structure that does not have the characteristic needle structure of martensite. It was found that with an increase in the current density during shock electromechanical treatment, the depth of hardening increases by 4 – 5 times with a simultaneous increase in the heterogeneity of strength properties; the level of micro-stresses increases by 25 %. Experimental data on the structural state, microhardness and depth of the surface layer of 40Kh steel show that electromechanical treatment with dynamic (shock) application of the deforming force causes deeper transformations in the steel structure compared to traditional static EMT. The results obtained show that as a result of electro-mechanical processing with impact, the intensity of the temperature-force effect on the steel surface layer increases, which allows you to open the internal reserves of 40Kh steel and control the process of forming its structure and phase states.

Highlights

  • The results obtained show that as a result of electro-mechanical processing with impact, the intensity of the temperature-force effect on the steel surface layer increases, which allows you to open the internal reserves of 40Kh steel and control the process of forming its structure and phase states

  • Mechanisms of hardening, wear and corrosion improvement of 316 L stainless steel by low energy high current pulsed electron beam surface treatment

Read more

Summary

Материаловедение Material science

Структура и свойства поверхностного слоя стали 40Х, подвергнутой электромеханической обработке с динамическим силовым воздействием. Приведены результаты комплексных исследований специфических особенностей структуры, микротвердости и глубины упрочненного поверхностного слоя стали 40Х, сформированного в результате электромеханической обработки с динамическим приложением деформирующего усилия (ЭМО с ударом). Способ электромеханической обработки с динамическим силовым воздействием заключался в одновременном пропускании через зону контакта инструмента с деталью импульсов электрического тока и деформирующего усилия. Анализ структурных и фазовых превращений в поверхностном слое стали 40Х, подвергнутой динамической электромеханической обработке, свидетельствует о формировании специфической структуры белого слоя. При электромеханической обработке с ударом увеличивается интенсивность температурно-силового воздействия на поверхностный слой стали, что позволяет управлять процессом формирования структуры и фазовых состояний стали 40Х. Структура и свойства поверхностного слоя стали 40Х, подвергнутой электромеханичес­кой обработке с динамическим силовым воздействием // Известия вузов.

Методики проведения исследований
Результаты исследований и их обсуждение
Размер ОКР и величина микронапряжений в исследуемых образцах
Findings
Список литературы References
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.