Abstract

Metallography, electron microscopy, and X-ray diffraction are used to study the effect of preliminary plastic deformation in the friction-contact zone on the structural transformations and wear resistance of 12Cr19N9T austenitic stainless steel subjected to subsequent oxidation in air at temperatures of 300–800°C for 1 h. Severe deformation under dry sliding friction produces a two-phase (γ + α) nanocrystalline structure in a ~10-μm-thick surface layer of the steel. The microhardness is 5.2 GPa. Subsequent oxidation at 300–500°C causes an additional increase in the microhardness of the deformed surface layer of steel to the value of 7.0 GPa. This is due to the active saturation of austenite and deformation-induced α'-martensite with oxygen atoms, which rapidly diffuse deep into the metal along the grain boundaries. The oxygen concentration in the surface layer and steel wear products reaches 8.5 wt %. The atoms of the dissolved oxygen efficiently pin dislocations in the γ- and α' phases, increasing the strength and wear resistance of the surface of the 12Cr19N9T steel. Oxidation at 550–800°C results in the formation of a large number of Fe3O4 (magnetite) nanoparticles, which increase the resistance of the steel to thermal softening and its wear resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call