Abstract

This research is focused on the investigation of robust surface interrogation tools which can support the planning and programming of 5-axis die/mold surface machining. Surface curvature information is evaluated to determine optimal tool orientation for 5-axis machining. A method for calculating machining strip width is proposed for 5-axis cutter path generation. This paper is focused on the development of computational geometry techniques and their application to design, analysis, and manufacturing automation. The proposed planning and programming methodology consists of three phases: (1) surface interrogation; (2) machining strip width evaluation; and (3) optimum tool orientation for 5-axis machining. This proposed research can be used to improve the quality of 5-axis die/mold machining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.