Abstract

This paper examines the effect of tool tilt angle on machining strip width in the determination of optimal tool orientation and feed direction in five-axis flat-end milling. The machining strip width is evaluated using the swept profile of the flat-end mill, avoiding both local and global gouging of the tool. An optimization problem is formulated to maximize the machining strip width over feasible gouge-free tool orientations for a constant-feed direction. By solving the optimization problem and analyzing the geometry of the machining strip width, it is shown that identifying the optimal tool tilt angle, instead of following the common practice of setting the tool tilt angle as zero, can significantly increase the machining strip width, especially for 3D free-form surface machining. The optimization has also been extended to identify the optimal feed direction that maximizes the machining strip width at a given cutter contact (CC) point. The minimum curvature direction has been considered as the optimal feed direction at a CC point by researchers. Our results indicate that although the minimum curvature direction is mostly not the optimal feed direction in free-form surface machining, the minimum curvature direction does represent a good approximation of the optimal feed direction at a CC point, in particular for a free-form surface with low-curvature relative to the tool size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call